Int. J. Solids Structures Vol. 23, No. 1, pp. 133151, 1987 0020-7683/87 $3.00+ .00
Printed in Great Britain. Pergamon Journals Lid.

ENDOCHRONIC PLASTICITY: SOME BASIC
PROPERTIES OF PLASTIC FLOW AND FAILURE

H. Murakamit and H. E. REaD
S-CUBED, A Division of Maxwell Laboratories, La Jolla, CA 92038-1620, U.S.A.

(Received 25 July 1985 in revised form 21 February 1986)

Abstract—Some basic properties of plastic flow of the new endochronic plasticity theory are
established, using analytical and numerical methods. Particular attention is given to the case, of
significant practical importance, in which the theory exhibits a failure surface. The plastic flow
properties so established are compared with those of conventional plasticity theory; it is shown that
the two theorics, in general, exhibit substantially different plastic flow rules. Also, proofs are given
which show that the new endochronic theory satisfies the Postulate of Isotropy and Drucker's
Postulate of Stability in the Small.

{. INTRODUCTION

Endochronic plasticity was first introduced by Valanis[1, 2] in 1971 as an alternate approach
for describing the inelastic behavior of history-dependent materials. The theory was founded
upon the concepts of irreversible thermodynamics of internal variables, and formulated on
the hypothesis that the current state of stress in a material is a functional of the entire
history of deformation. The key to the theory is that the deformation history is defined,
however, with respect to a deformation memory scale, called intrinsic time, which is itself
a property of the material at hand. The resulting theory provides a unified approach for
describing the elastic—-plastic behavior of materials which do not require the notion of yield
surface nor the specification of a loading function to distinguish loading from unloading.
In essence, it predicts that plastic flow will occur from the onset of loading, a feature which
is experimentally observed for numerous materials, including metals and granular materials.

In the early version of endochronic theory[1, 2], the intrinsic time was defined in terms
of the strain tensor. This resulted in a theory having several features which were inconsistent
with the observed behavior of most materials. In 1979, Valanis[3] developed a new version
of endochronic plasticity theory which does not suffer from these shortcomings. In this new
theory, the intrinsic time is defined in terms of the plastic strain tensor. Since its introduction,
the new theory has been applied with remarkable success to various problems in metal
plasticity[4, 5], soils[6} and concrete[7]. Despite this success, however, little has been done
to establish the general plasticity properties of this new theory, particularly as they relate
to the more conventional forms of elasto-plasticity. An understanding of these properties
and their compatibility with measured material properties, is, of course, necessary for
establishing the basic validity of the theory on physical grounds for various classes of
materials.

An initial effort to explore the plastic properties of the new endochronic theory was
undertaken by Trangenstein and Read[8], who considered the case of non-proportional
deviatoric loading involving an abrupt change in loading direction. The results from their
study, while somewhat limited by conditions to be discussed in the sequel, clearly showed
that the plasticity features of the new endochronic theory, in general, differ greatly from
those of classical plasticity. Nevertheless, some confusion has arisen lately in the literature
regarding this issue[9, 10].

The purpose of the present paper is to further extend the study of the general properties
of endochronic plasticity initiated by Trangenstein and Read[8] and, in particular, to
consider the case in which a failure surface exists. Where possible, analytical methods are
employed for this purpose and, in those cases where such methods prove to be intractable,
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numerical methods are utilized to examine the theory. The plastic flow properties so
established are compared with those from conventional plasticity ; it is shown that the two
theories exhibit, in general, substantially different flow rules. Finally, proofs are given in
the Appendix which show that the new endochronic plasticity theory satisfies the Postulate
of Isotropy and Drucker’s Postulate of Stability in the Small.

2. BASIC EQUATIONS

We shall consider the deviatoric portion of the new endochronic theory, and attempt
to establish some of its basic properties of plastic flow, especially for the case in which a
failure surface exists. For small, isothermal deformation, and assuming plastic incom-
pressibility, the basic equations of the new endochronic theory for deviatoric response are
as follows :

E:J:p(z—z’)%; dz’ (1)
_ 4
dz = G 2
where
d¢ = [|de|l (3)
d

d¢’ = dg - 5¢ @

and, by definition:
dg =dg—}rr(® 1 (5)

Here, 5, ¢ and ¢’ denote, respectively, the deviatoric stress, the deviatoric strain and the
plastic deviatoric strain, while g is the total strain. The variable z is termed the intrinsic
time, while { describes the path length traversed by a deformation process in the 5-
dimensional plastic deviatoric strain space, with suitable metric. In addition, f(2) is a
smooth positive function which provides for hardening, and G is the shear modulus. The
double bars around a symbol denote its Euclidean norm.

The kernel function p is a weakly singular function of z, satisfying the condition
p(0) = oo such that

®(z) = I p(y) dy (6)

0

exists for all z > 0. The weakly singular nature of p(z) is a crucial feature of the theory for
two reasons : (1) it provides for closure of hysteresis loops in the uniaxial or shear stress-
strain space, however, small they may be, and (2) it ensures that, at points of unloading or
reloading, the response is instantaneously elastic{3)].

It will be assumed below that p(z) is of the following general form:

p=g(2)z"" (M

where 0 < & < 1 and g(z) is a positive, continuous function. Depending upon the particular
forms of g(z) and 1 (z), the theory will or will not possess a failure surface. In the sequel,
we set f(z) = 1 for convenience. Conditions on g(z) which lead to a failure surface are
addressed in the following section.
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3. CONDITION FOR THE EXISTENCE OF A FAILURE SURFACE

To determine the conditions on the function g(z) under which the theory described by
eqns (1)-(5) possess a failure surface, consider the case of proportional loading in the
deviatoric plane. Denoting by # the unit tensor in the direction of loading, we can write

8=, Q” = _1(‘”, d.(:/’ =N d:’ "Q“ = ], (8)

so that eqn (1) becomes:

s = J' p(z—2) dz = j p(z’) dz’. &)
0 0
Since p(z) > 0 for all z, a failure surface will exist if the following condition is satisfied :

lims = limJ p(z)dz' = limJ ‘(—]}(]Ty) dy £ M, (10)
= = g Eand )

0
where M is a positive constant. Since g( y) is assumed to be a positive, continuous function,

the above condition is satisfied whent

zlirgj 90 dy < Mo, (1)

0

where M, is a positive constant, subject to the condition that g(y)y~* is weakly singular
aty =0.

A particular form of g(z) which has been used widely and successfully in the literature
in applications of the endochronic theory to various materials is

9(2) = poe™, (12)

where p, and B are positive constants. From condition (11), it follows that for the above
form of g(z) a failure surface exists. This can also be shown by noting that with

P=pPo—z (13)

it follows from eqn (9) that

e~M
5= poL 7 dy = pof~"'"9y(1 —a, f2) (14)

where y(1 —a, ) denotes the incomplete gamma function. Thus,
S = lims = pof~'"T(1 —a), (15)

where I'(1 —a) is the gamma function, thereby showing that s limits to a finite number as z
tends to infinity. Since the direction 1 of loading is arbitrary, eqn (15) shows that, when
f(2) = 1, the failure surface for radial loading is a circle in the deviatoric plane.

For an arbitrary stress path, eqn (1) with f(z) = 1 yields

15,1 < J o(») dy. (16)

0

t For proof, sce Ref. {11], p. 653.
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Inequality (16) implies that each stress component is bounded by eqn (15). This together
with the result for radial loading indicates that for arbitrary stress paths the failure
surface is bounded by the circle in the n-plane defined by eqn (15).

In the remainder of this paper, the form of p(z) given by eqn (13) will be adopted for
the purpose of exploring the plastic flow properties of the version of the theory which
exhibits a failure surface.

4. LIMITING CASES OF RESPONSE TO SMOOTH STRAIN PATHS

In this section, two limiting cases of the model’s response to smooth strain paths are
considered, namely (a) response for small z near the origin of the deviatoric plane and (b)
response for large values of z as a failure surface is approached. A knowledge of the model’s
response to these two cases provides a further understanding of its characteristics and is
uscful in assessing the numerical results presented in Section 6.

4.1. Response for small - near the origin of deviatoric space
Consider eqn (1), which may be differentiated to give:

d Z
a—j = p(z)a(0)+ j p(y)@ (z—y) dy an
in which
_d 4 18
g bl dZ b g - dzg ( )

where ¢ is a unit tensor. For smooth strain paths, we can write:

x 1
40 =@+ 3 L (-CE
(9)
_1”
de-n=3 “Lyac

n=0

Substituting eqn (19) into eqn (17) leads to the expression

1
g;_ p(2)a(z)+ Z f( 2)'p(2)d"(z) +4 (A)J p(y) dy+ Z z"* '(Z)J Y'p(y) dy.

(20)
Since p(z) ~ z7°, it follows that:
Z'p(2) = 0(z"")
Ip(y) dy =0(@z""") 21
0
L y'p(y) dy =0(z"*'"%).
Consequently, eqn (20) can be expressed as:
ds
5, = PR +0G"), (22)

from which it follows that, for z « 1, the tangent to the stress path ¢ and g are coaxial, since
0 < a < 1. Therefore, ds and d¢” are also coaxial.



Endochronic plasticity : some basic properties of plastic fiow and failure 137

4.2. Response for large z near a failure surface
Consider eqn (1) with p(z) defined according to eqn (13). By making a change of
variable, we can write :

ze—ﬂy
£=poj —a(z—y) dy. (23)
o J

To explore the asymptotic behavior of this equation as the failure surface is approached,
we consider smooth plastic strain paths and investigate the limiting form of eqn (23) as z —»
oo. For a wide class of materials, including metals, concrete and rock, it transpires that
B > 1 (actually of order 10*). When this is the case, the integral in eqn (23) can be evaluated
asymptotically for large Sz by using Watson’s lemma.t Following this approach, it is noted
that for large Bz, the major contribution to the above integral occurs near y = 0. Because
of the assumed smoothness of the ¢?-path, the function g(z — y) can be expanded in a Taylor
series about y = 0, i.e.

2
6z-)) = 4@ -yd @) + 5 @)— (24)

Consider now a stress path which is arbitrary for z < z¢ but, at z,, monotonically
approaches the failure surface. For z > z,, g will be smooth and simple during its recent
past {z—y|0 < y < yn}, where y,, is a characteristic of the material such that for y 2 y,,
e ? is negligible. For such paths, g can be represented by the first few terms of the series
expansion (24) over {0 < y < y,,} where e~ takes on significant values.

Hence, eqn (23) can be expressed as:

© ,—By
= Po-[) e—yr[,q(Z)—ya’(ZH ] dy+0(e™%). (25)

Applying Watson’s lemma to the first integral on the r.h.s. of eqn (25), we obtain the result

r{a- re-
P P e T B (L VS 26)

as Bz —+ o0. This expression may be rewritten, using eqn (16) and the relation I'(n+1) =
nI(n), in the form:

_ s 1 ,f2=a), 1 ,(2—a\(3—a) ,

where we have set

1—
c= —ﬁf (28)
Taking the norm of both sides leads to the expression
1{2—a 2
sl = sw[l —c’{l +5 (1—_—0-)} @ @)+0(87).. ] @9)

where use has been made of the fact that g*g = 1 and g- g’ = 0. It then follows from eqn

t See, for instance, Rel. [12].
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Fig. 1. Stress path in the n-plane, showing g becoming coaxial with § as failure surface is approached.

(29) that as 5 approaches the failure surface, ||g|| = s, which can occur only if g’ — 0.
Therefore, it follows from eqn (27) that as the failure surface is approached, § becomes
coaxial with g, and hence with d¢’. Consequently, if the trace of the failure surface in the
deviatoric plane is a circle, d¢” will become normal to this surface as § approaches the
surface, as depicted in Fig. 1. This feature of the theory will be illustrated via examples in
the numerical studies presented in Section 6.

5, RESPONSE TO AN ABRUPT CHANGE IN LOADING DIRECTION

Important insight into the constitutive properties of complex constitutive theories can
often be obtained by examining their response to an abrupt change in loading direction
from an otherwise smooth stress path. This approach was adopted by Trangenstein and
Read[8] to explore the inelastic properties of the new endochronic theory and it is also
followed here. We begin with a review of the analysis by Trangenstein and Read[8], and
show that the form of the asymptotic expansion which was assumed in their analysis, is of
limited validity and applies only to a small class of stress paths. A more general form of
asymptotic expansion is then introduced into the analysis, which leads to results which
appear to have general validity.

5.1. Previous study

Trangenstein and Read[8] recently considered the response of the new endochronic
model to an abrupt, arbitrary change in loading direction from a previously smooth stress
path. These authors focused on the same form of endochronic model that is considered in
the present paper, with the kernel function having the general form given by eqn (7). Using
asymptotic expansions, the characteristics of the model were determined for infinitesimal
loading increments, dg, in a new arbitrary direction § in stress space from a previously
smooth stress path, as shown in Fig. 2. The tangent to the smooth stress path at the point
of abrupt change in stress direction will be denoted by £, where both  and ( are unit vectors.
The analysis of Ref. [8] then showed that (a) the preceding plastic strain increment, d¢’, is
coaxial with ¢, and (b) the incremental inelastic compliance, C?, varies with the direction

to

Stress Path ¢

0

Fig. 2. Smooth stress path in the n-plane, showing the unit vectors g, ¢ and [ and the angles 6, ¢
and ¢
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of the new stress increment according to the expression :

cos Y n
, ¥ <3
o] 4
ds -
3 ‘l/ = 5
when there is no hardening in the model, i.e. f(z) = 1. In eqn (30), y, is defined as
Yo = &, g(O)(1 —)I"(1 +a)/T'(2) (3D

where a, is a positive constant and I" ( ) denotes the gamma function. Furthermore, ¥ is
the angle between the vectors § and £, so that we can write

cosy =phL (32)

Equation (30) indicates that whenever the new loading direction  makes an angle ¢
of less than n/2 with the tangent to the stress path 2, the response of the model will be
inelastic. On the other hand, whenever ¥ is equal to or greater than n/2, the response will
be purely elastic, but only in the infinitesimal neighborhood of the abrupt change in
loading direction. These response characteristics obviously differ substantially from those of
classical plasticity, as noted in Refs [8, 10].

It is important to note that the analysis of Trangenstein and Read[8] was based upon
an assumed form of asymptotic expansion which actually forces the plastic strain increment
de?, to be coaxial with ¢ for a smooth stress path; this constraint is not generally valid,
especially for stress states near a failure surface as shown in Section 4.2. Such a constraint
can be eliminated by adopting a more general form of asymptotic expansion in the analysis,
which is done below.

In that which follows, the response of the endochronic model to an abrupt change in
loading direction in stress space is reanalyzed using a more general form of asymptotic
expansion than adopted in Ref. [8]. It is shown that the resulting response characteristics
differ considerably from those found in Ref. [8] and are in agreement with corresponding
numerical studies and limiting cases considered herein.

5.2. New analysis
Consider a deviatoric stress path that is smooth for 0 < z £ z; and, at z = z, suddenly
changes direction so that, for z > z§, the deviatoric stress increment, dg, lies in a new
direction b.1 For z§ < z < z¢+ Az, we consider an asymptotic expansion for 5 of the form:
8(z0+A2) = 5(z0) +bkAZ, (33)
where g > 0 and k are to be determined. Furthermore, upon setting

As(z0) = $(20+A2)— 5(20), (34)

we can use eqns (1) and (13) to write

Az e—ﬁy
_+L po—la(zo+Az—y)—ga(zo—y)} dy (35)

As(zo) = Az |}§-§ .

+ Here, z; and z$ are the left and right neighborhood values of z,, respectively.
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where

dg

dz

_ 44

¢ 5 dzlg

e‘ﬂzo 70 e‘ﬂ}'
Ep°7“(0)+J po— @ (z0—y) dy. (36)
0 0 y

Consider now the asymptotic expansion for g(z¢+ Az). This expansion should be expre-
ssed in terms of two linearly independent vectors, one of which must be . For the other
vector, we have g and ¢ available, since they are both linearly independent of . If g is selected
for this purpose, as was done in Ref. [8], it restricts g to be coaxial with £, a condition which
is not correct for stress states near a failure surface (see Section 4.2). Therefore, it appears that
the appropriate vectors to use in the asymptotic expansion for g(z,+ Az) are b and f and, on
this basis, we adopt the following form for the asymptotic expansion of g:

a(zo+Az)—qa(z) = —to,AZ" +H(Bo+ B1AZ) (37
where a,, By, B, u and p are constants. We shall also assume that
Bo+B.,A2 >0 for Az > 0. (38)

Upon substituting eqn (37) into eqn (35), and using the expansions for the integrals involving
p(z) given in Ref. [8], it follows that

As(z0) —;-,L{Az "gf ——————————r(l —o9id +u)Az'+"‘“}

w PR u—a)

Pobo “y 0T (d+p) , ., .
+Q{ Az'- Oﬂ'_——_r(2+p 2) Az' } (39)

However, the new stress increment, Ag, at the point of the abrupt change in loading direction
was prescribed in the arbitrary direction §, in eqn (33). As a result, the coefficient of £ in eqn
(39) must vanish, which leads to the following conditions:

u=a
(40)
0 = |2 r@)era-arata).
Lett
cosO0=g-t
¢ @)
cosp=g-h
and note that for the unit vector g:
la(zo+A2))% = 1. (42)

Upon substituting eqns (37), (40) and (41) into eqn (42), it follows that:

1 = {I+B¢(Bo+2 cos ¢)} —2a;(cos 8+ f, cos Y)Az*
+2B,(cos @+ Bo)Az? + BiAz? +alAz ™ —2a, B, cos YAZ**?. (43)

(i) Consider the case cos ¢ > 0. The zero order terms in eqn (43), together with the non-

1 It can be shown (see Appendix) that cos 0 > 0.
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negative condition from eqn (38), require that
Bo = 0. (44)
The next higher order terms in eqn (43), together with eqn (40a) imply that
p=u=a (45)
B, = a, cos 8/cos ¢. (46)

Upon substituting eqns (44)—(46) into eqn (39), we find

d,g =5 As cos 6

b ds
dz Az+0 Az cos ¢

dz

(47)

%5
The finite value of dg/dz at zg§ implies plastic response for this case.

(ii) Consider the case cos ¢ = 0. In this instance, the zero order terms must satisfy eqn (44),
while the next higher order terms require that

— 20, cos OAZ* + BiAz¥ = 0. (48)
Thus,
u
P=3=3 49)
ﬂl = (Zal Cos 0)1/2. (50)

Upon substituting eqns (49) and (50) into eqn (39), we find that

a—z' " - 00, (51)

implying that the response is purely elastic.

(iii) Finally, consider the case cos ¢ < 0. The zero order terms in eqn (43) must satisfy the
condition

Bo= —2cos ¢ (52)
while the next higher order terms require that
p=aqa. (53)

Inasmuch as B, # 0, we obtain in this case the condition (51), implying that the response
is purely elastic.

The results of the above analysis can be conveniently expressed in terms of the
incremental plastic compliance, C?, as follows:

cos ¢

g7

-
A\
I3 A
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Fig. 3. Variation of incremental plastic compliance with angle ¢.

where

9§
dz

Fzy)=cos 0

(55)

N

Equation (54) reveals that C” is a continuous function of the angle ¢ and is zero for all
stress increments normal to g, as well as for those which have a negative component with
respect to g at z;, as depicted in Fig. 3. In addition, C” depends upon |dg/dz]|,, , which
approaches zero as a failure surface is approached. Note also that C? depends upon the
angle 0 between the unit vectors g and £ and that this angle depends upon the plastic strain
history. Except for proportional loading, in which case g and  are coaxial, numerical
methods must be utilized to explore the properties of the plastic compliance, C7; this is
done in Section 6 for a number of smooth complex stress paths.

For the special case of proportional loading, g and £ are coaxial so that y = ¢. In this
case, it is straightforward to show that eqn (54) reduces to the expression for C” given in
Ref. [8].

6. NUMERICAL STUDY OF COMPLEX STRESS AND STRAIN PATHS

The response of the new endochronic model to various prescribed complex (non-
proportional) stress and strain paths is investigated in this section using numerical
procedures. An incremental numerical approach developed for this purpose is described,
and the results obtained from applying it to study the response of the model to a number
of complex paths are presented ; these results aid in defining the inelastic characteristics of
the model for stress states that lie between the two limiting cases treated in Section 4.

6.1. Numerical scheme

Valanis and Read([6] have shown that the weakly singular kernel function, p(z), of the
new endochronic theory can be expressed in terms of a Dirichlet series :

p(2) = i R, e ¢* (56)

where, in order to satisfy the Clausius—Duhem inequality, it is necessary that «, > 0 and
R, = 0 for all r. Moreover, to ensure that p(z) is singular at the origin and integrable over
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a finite domain of z, we must have

T R, = o, 2§< . (57a,b)
ra=| re=1| %r

In past applications of the theory, it has been found that two or three terms of the series
(56) are usually quite adequate for representing p(z); in such cases, however, care must be
taken to ensure that the infinitely large value of p(0) is approximated by a suitably large
finite value. When this is done, we can write

p(2) = z R, e % (58)

r=]

when # is finite. Substitution of eqn (58) into eqn (1) yields the following expression for s:
=Y 0, (59)
r=1

where

: .d
0 = R,L e Af—”d—f,’ dz'. (60)

Differentiation of this equation gives the following linear first order differential equation :

do, d¢f
p +a'Q’_R’Ez—’ (61)
which, together with eqn (59), allows one to write
ds=Rdg"—Qdz, (62)
where
R=3Y R, Q=}%aQ. (63a,b)
re=| r=1

Equations (61)-(63) provide a simple approach for incrementally integrating the stress, s,
which is considerably more attractive from a computational standpoint than numerically
coping with the hereditary integral in eqn (1).

In that which follows, explicit numerical schemes are presented for incrementally
updating the governing equations of the new endochronic theory when either the strain or
stress histories are given, Because of the explicit nature of the schemes, it is necessary that
the increments be taken sufficiently small to ensure accuracy.

Prescribed strain history. It is assumed that 5, ¢, ¢, 0, and Q are known at the beginning
of each known increment of strain, Ag. Using eqn (62), we can write

bs= 3 AQ = RAg—Qus, - (64)

while the incremental Hooke’s law, eqn (4), yields

As = 2G(Ag—Ag). (65)
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Substitution of eqn (65) into eqn (64) leads to the expression

Ae+§aQA~—<l+2G>Ag’ (66)

Upon taking the inner product of eqn (66) with itseif, and using eqns (2) and (3) with
f(2) = 1, it follows that

1Y R 2

For given Ae and @, eqn (67) provides a quadratic equation for the unknown Az. Once Az
is known, A¢” can be obtained from eqn (66) and Ag can then be determined by egn (65).
Equation (61) is used next to evaluate AQ,. This explicit integration scheme was originally
developed by Valanis[13]. ~

Prescribed stress history. For this case, s, ¢, ¢”, Q, and @ are assumed to be known at
the beginning of each known increment of stress, As. Using eqn (62), we can write

RAZ = As+Q Az, (68)

Upon taking the inner product of eqn (68) with itself, and using eqns (2) and (3) with
f(z) = 1, it follows that

(Q'Q—RZ)A22+2(A;_°Q)A2+A,§'A£=0, (69)

which again is a quadratic equation for Az. After solving for Az, A¢?, AQ, and Ag can be
determined from eqns (68), (61) and (65), respectively.

6.2. Numerical investigation of complex paths

Using computer programs based upon the numerical schemes described above, the
response of the new endochronic model is explored numerically in this section for a number
of complex (non-proportional) stress and strain paths. For this purpose, a model was fit to
copper data, which used three terms in the series (58), having the following values for a,
and R,:

(@, 2z, @3) = (0.767,1.15,2.75) x 10*

70
(R, Ry, R;) = (0.46,2.2,5.9) x 10* GPa. 70

Moreover, we set
G = 38.61 GPa. ()

Consider, first, a prescribed strain path, having the triangular form shown in Fig. 4.
The path starts at ¢ = 0, proceeds along the ¢;-axis and continues in a counterclockwise
direction. At various intervals along the path, the corresponding stress vectors predicted
by the model are shown. Note that, after a sudden change in the direction of strain, the
stress vector changes smoothly, gradually approaching coaxiality with the strain increment.
Such behavior reflects the effect of fading memory inherent in the model, and has been
experimentally observed by Ohashi et al.[14, 15] for metals. The response of a classical
plasticity model with hardening to this strain path was also investigated and found to result
in a similar variation of the stress vectors along the path.

Substantial differences between the new endochronic model and classical plasticity
become apparent, however, by investigating prescribed stress paths. Consider, for example,
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Fig. 4. Triangular strain path and corresponding stress vectors predicted by model.

the circular stress paths depicted in Fig. 5, where g, denotes the yield stress in simple
tension. Here, the corresponding plastic strain increment vectors, A¢?, predicted by the new
endochronic model at various points along the paths for the specified increments |Ag/a, |
are shown. Note that, in the cases of the two small circular paths shown in Fig. 5(a), the
vectors, A¢” are almost tangent to the stress paths for small z, which is consistent with
results derived carlier in Scction 4.1, and the radial component of A¢” increases as the failure
surface is approached, consistent with Section 4.2. As the failure surface is approached,
Ag - .

Next, consider the complex stress path shown in Fig. 6, which has a circular segment
that is near to, and concentric with, a failure surface. The stress path starts at the origin,
proceeds upward along the s;-axis and then follows the circular segment in a clockwise
fashion. The plastic strain increment vectors, A¢”, predicted by the model at various pos-
itions along the circular segment are shown in the figure. Note that these vectors are nearly
perpendicular to the stress path and nearly coaxial with the stress, 5. These features of the
model are in full agreement with the analysis presented in Section 4.2 for the case of limiting
behavior near a failure surface.

Figure 7 shows stress paths consisting of two linear segments. The paths start at the
origin, proceed along the sj-axis and then turn to follow linear paths, which make angles
of 30°, 60° and 90° with the 5;-axis. Again, the plastic strain increment vectors, A¢’, predicted
by the model at various locations along the second segment of each path are shown in the
figures. For the paths depicted in Fig. 7(a), in which the second segment of the stress paths
begins at s; = 0,/6, the vector, A¢’, is initially almost tangent to the stress path, but becomes
increasingly perpendicular to the failure surface as the failure surface is approached. For
the paths shown in Fig. 7(b), the second segments begin at s, = 0,/3, which is substantially
closer to the failure surface than the point at which the second segments in Fig. 7(a) were
initiated. As a result, the incremental vectors, A¢”, are not tangent to the stress path as
before, but have a significant radial component which becomes increasingly dominant as
the failure surface is approached. All of the above behavior is again fully consistent with
the results derived in Section 4.

SAS 23:1-J
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Fig. 5. Circular stress paths and corresponding plastic strain increment vectors predicted by the
model: (a) small radii paths near the origin, (b) large radius path.
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vectors predicted by the model.

Finally, consider the stress path shown in Fig. 8, which consists, first, of loading along
the s;-axis, followed by a triangular path traversed in a counterclockwise direction. The
vectors, A¢”, predicted by the model at various positions along the triangular portion of the
stress path are shown in the figure. Note that, after an abrupt change in the loading
direction, the vector, A¢’, greatly diminishes in magnitude, reflecting the unloading that is
occurring. An interesting and unique feature of the model is that no unloading or reloading
criteria are required. Also, as the stress path approaches the failure surface, the vector, A¢?,
becomes normal to this surface, again in agreement with the results from Section 4.

7. CONCLUSIONS

The purpose of this study was to explore the plastic flow and failure characteristics of
the version of the new endochronic theory which exhibits a failure surface. Where possible,
the inelastic characteristics of the model have been investigated theoretically and, in other
cases, numerical methods have been developed and applied to establish various constitutive
features of the model. The major results and conclusions from this study are summarized
as follows:

1. The mathematical requirements which the kernel function p(z) must satisfy so that
the model will possess a failure surface were established. When these requirements are
satisfied, and the hardening function f (z) is set to unity, the model exhibits a failure surface
whose trace in the n-plane is a circle.

2. The plastic flow properties of the endochronic model which exhibits a failure surface
were theoretically established for two limiting cases, namely, (a) the response for small z
near the origin and (b) the response for large z as failure is approached.

3. The previous analysis by Trangenstein and Read[8], concerning the response of the
new endochronic model to an abrupt change in loading direction from an otherwise smooth
stress path, was reviewed and found to have limited application, due to the specialized form
of asymptotic expansion assumed. A more general asymptotic expansion was developed
and used to reexamine the properties of the model under an abrupt change of loading
direction. The results from this new analysis include those of Ref. [8] as a special case and,
on the basis of other evidence presented herein, appear to have general validity.

4. The new analysis shows that, whenever a new loading direction makes an angle of
less than n/2 with the preceding plastic strain increment, de¢’, the new model will exhibit
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Fig. 7. Bilinear stress paths with corresponding plastic strain increment vectors predicted by the
model : (a) radial loading to ¢,/6, (b) radial loading to 6,/3.

plastic flow. Conversely, whenever this angle is equal to, or greater than, #/2, the model
predicts purely elastic response, but only for infinitesimal stress increments in the new
direction. For finite increments, the model leads to plastic flow for all changes in loading
direction, a feature which provides the model with the ability to describe hysteresis under
cyclic loading.

5. The response of the model to a number of complex (non-proportional) stress and
strain paths was investigated numerically, using a simple explicit numerical scheme for
incrementally integrating the governing system of equations. In all cases, the results from
the numerical study were fully consistent with the analytical results derived herein, including
the limiting cases of Section 4 and the asymptotic analysis of Section 5.

6. Proofs were given to show that the model obeys the postulates of (a) Stability in the
Small[19] and (b) Isotropy[16].
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Fig. 8. Triangular stress path with corresponding plastic strain increment vectors predicted by the
model.

The results from this study clearly demonstrate that the plastic flow properties of the

new endochronic theory differ in significant and fundamental ways from those of classical
plasticity.
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APPENDIX

1. Postulate of isotropy

The postulate of isotropy was introduced by II'yushin[16] and further elaborated upon by Lenskii[17]. It
asserts that if two strain histories are so related that the strain trajectory of one can be obtained from the strain
trajectory of the other by a rotation or reflection in the strain space, then the stress history for one can be obtained
from the stress history of the other by the same geometric transformation. Iviev[18] also pointed out that the
isotropy of the material (or model) does not necessarily imply that the postulate of isotropy will hold. In that
which follows, a proof is given which shows that the new endochronic theory considered here satisfies the postulate
of isotropy.

Consider the Laplace transform of § with respect to z:

s#=2L= Lw s(z)e~* dz. (A-1)
Fromegn (1) and g, = @, at z = 0, one obtains
st =p*prg (A-2)
where p* = Z(p).
Consider another pair {g}, 5) which satisfics
& = Rl (A-3)

where [R] is an orthogonal matrix which is independent of z. Then
§* = p*pg* = p*pIRlg = [R]s* (A-4)
which may be inverted to give

¢ =[Rls (A-5)
thereby showing that the model satisfies the postulate of isotropy.
2. Drucker'’s postulate

The purpose of this section is to prove that the version of the new endochronic model treated herein satisfies
the condition:

d
@) ) >0 (B-1)
which is equivalent to Drucker’s postulate of stability in the small[19}.
Assume that
e'ﬂz @
p(2) = po—= YRe? for &<z (B-2)
rm}

where ¢ « 1, R, > 0, B, > 0, and the series is uniformly convergent. The series is ordered in such a way that

limite8 = 0. (B-3)

r—-w

For 0 < z < € « I, eqn (22) indicates that

d
e(Z)'&.:(Z) = p(z) > 0. (B-4)
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Fore < z < w0, eqn (17) yields

0@ .s()— (e)e<z>~q(z—e)+_fp(y)q() dgz=) }+[ P ())e(‘) +a(z—) dy. (B-5)

The right-hand side terms can be expanded as follows:

2
p(e)a(z) g(z—e) = p(e)a(2)* [g(:) —eg'(z) + e59"(2)— - ]
. (B-6)
= () { 1+ g(:)-a"(z)+0(c’)]

_[P(J’)E(Z) dee=)) ﬁp(y)q(Z)'M’(Z)—ya”(2)+~-~] dy
(B-7)

— PR poez_' 3-a
= —at) e @5 +0@).

Since the series (B-2) is uniformly convergent and the derivative of the series is also uniformly convergent, as
shown in the scquel, it is possible to wrile

d’(’i(y” ~LRREN  for  c<z<o. (B-8)

Since Z — is convergent, as shown in egn (57b), and hm B?e B¢ = 0 due to eqn (B-2), the series in eqn (B-8) is

r=
uniformly convergcnt by virtue of the theorem for the convergence of the series consisting of the products of two
sequences ; see for instance, Ref. [20], p. 70. The use of eqn (B-7) with |a(z)*g(z—y)| < 1 yields

l [ D o) aa=) &y < 902 ®9)

Equation (B-5) with eqns (B-6), (B-7) and (B-9) yields eqn (B-1). Noting that ¢ = dg/{|dgl, it follows from eqn
(B-1) that

cosf=a't>0. (B-10)



